Skip to content
Snippets Groups Projects
Commit d2309e15 authored by Jacob Strom's avatar Jacob Strom
Browse files

Adding testvector onnx files and the .py files that created them.

parent ef5f11d1
Branches pad00fix
No related tags found
No related merge requests found
Pipeline #13854 passed
Showing
with 176 additions and 0 deletions
File added
import os
import sys
import torch
class Pad0Module(torch.nn.Module):
def __init__(self):
super(Pad0Module, self).__init__()
self.conv3x3_pad00 = torch.nn.Conv2d( in_channels=16, out_channels=16, kernel_size=(1,3), stride=(1,1), padding=(0,0), groups=16 )
def forward(self, x):
y = self.conv3x3_pad00(x)
return y
input_size = (1, 16, 4, 4)
output_size = (1, 16, 4, 2)
model = Pad0Module()
input = torch.randn(*input_size)
model.eval()
output = model(input)
# Output onnx model path
onnx_model_path = os.path.join(os.path.dirname(sys.argv[0]), "conv2d_16_4x4x16_k1x3s1,1_g16_p0,0.onnx")
# Convert to onnx
torch.onnx.export(model, input, onnx_model_path, opset_version=10)
File added
import os
import sys
import torch
class Pad0Module(torch.nn.Module):
def __init__(self):
super(Pad0Module, self).__init__()
self.conv3x3_pad00 = torch.nn.Conv2d( in_channels=16, out_channels=16, kernel_size=(3,1), stride=(1,1), padding=(0,0), groups=16 )
def forward(self, x):
y = self.conv3x3_pad00(x)
return y
input_size = (1, 16, 4, 4)
output_size = (1, 16, 2, 4)
model = Pad0Module()
input = torch.randn(*input_size)
model.eval()
output = model(input)
# Output onnx model path
onnx_model_path = os.path.join(os.path.dirname(sys.argv[0]), "conv2d_16_4x4x16_k3x1s1,1_g16_p0,0.onnx")
# Convert to onnx
torch.onnx.export(model, input, onnx_model_path, opset_version=10)
File added
import os
import sys
import torch
class Pad0Module(torch.nn.Module):
def __init__(self):
super(Pad0Module, self).__init__()
self.conv3x3_pad00 = torch.nn.Conv2d( in_channels=16, out_channels=16, kernel_size=(3,3), stride=(1,1), padding=(0,0), groups=16 )
def forward(self, x):
y = self.conv3x3_pad00(x)
return y
input_size = (1, 16, 4, 4)
output_size = (1, 16, 2, 2)
model = Pad0Module()
input = torch.randn(*input_size)
model.eval()
output = model(input)
# Output onnx model path
onnx_model_path = os.path.join(os.path.dirname(sys.argv[0]), "conv2d_16_4x4x16_k3x3s1,1_g16_p0,0.onnx")
# Convert to onnx
torch.onnx.export(model, input, onnx_model_path, opset_version=10)
File added
import os
import sys
import torch
# more7: 8 in 16 out <- pass
# more8: 16 in 8 out <- fail
# more9: 16 in 4 out <- fail
# more10: 16 in 1 out <- fail
# more11: 10x10 -> 10x8
# more12: 10x10 -> 10x8
class Pad0Module(torch.nn.Module):
def __init__(self):
super(Pad0Module, self).__init__()
self.conv1x3_pad00 = torch.nn.Conv2d( in_channels=16, out_channels=1, kernel_size=(1,3), stride=(1,1), padding=(0,0) )
def forward(self, x):
y = self.conv1x3_pad00(x)
return y
input_size = (1, 16, 4, 4)
output_size = (1, 1, 4, 2)
model = Pad0Module()
input = torch.randn(*input_size)
model.eval()
output = model(input)
# Output onnx model path
onnx_model_path = os.path.join(os.path.dirname(sys.argv[0]), "conv2d_16_4x4x1_k1x3s1,1_g1_p0,0.onnx")
# Convert to onnx
torch.onnx.export(model, input, onnx_model_path, opset_version=10)
File added
import os
import sys
import torch
# more7: 8 in 16 out <- pass
# more8: 16 in 8 out <- fail
# more9: 16 in 4 out <- fail
# more10: 16 in 1 out <- fail
# more11: 10x10 -> 10x8
# more12: 10x10 -> 10x8
class Pad0Module(torch.nn.Module):
def __init__(self):
super(Pad0Module, self).__init__()
self.conv1x3_pad00 = torch.nn.Conv2d( in_channels=16, out_channels=1, kernel_size=(3,1), stride=(1,1), padding=(0,0) )
def forward(self, x):
y = self.conv1x3_pad00(x)
return y
input_size = (1, 16, 4, 4)
output_size = (1, 1, 2, 4)
model = Pad0Module()
input = torch.randn(*input_size)
model.eval()
output = model(input)
# Output onnx model path
onnx_model_path = os.path.join(os.path.dirname(sys.argv[0]), "conv2d_16_4x4x1_k3x1s1,1_g1_p0,0.onnx")
# Convert to onnx
torch.onnx.export(model, input, onnx_model_path, opset_version=10)
File added
import os
import sys
import torch
class Pad0Module(torch.nn.Module):
def __init__(self):
super(Pad0Module, self).__init__()
self.conv3x3_pad00 = torch.nn.Conv2d( in_channels=16, out_channels=1, kernel_size=(3,3), stride=(1,1), padding=(0,0) )
def forward(self, x):
y = self.conv3x3_pad00(x)
return y
input_size = (1, 16, 4, 4)
output_size = (1, 1, 2, 2)
model = Pad0Module()
input = torch.randn(*input_size)
model.eval()
output = model(input)
# Output onnx model path
onnx_model_path = os.path.join(os.path.dirname(sys.argv[0]), "conv2d_16_4x4x1_k3x3s1,1_g1_p0,0.onnx")
# Convert to onnx
torch.onnx.export(model, input, onnx_model_path, opset_version=10)
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment